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Evidence for the existence of faulting in 
a splat-cooled  -Pu (Ti) alloy 

R. B. ROOF, R. O. E L L I O T T  
University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA 

Examination of X-ray diffraction profiles of a "splat-cooled" 15 Ti-85 Pu alloy has 
revealed that the material contains a large amount of twinning coupled with a reasonably 
small crystallite size and high strain. The localized strain is estimated to be 0.6~, the 
crystallite size ==_250 ,/k, and the twinning fault probability is large at 0.043. 

1, I n t r o d u c t i o n  
Metastable e-Pu (bcc) solid solutions were 
recently retained to room temperature for the 
first time by splat-cooling* Pu-rich Pu-Ti  alloys 
from the melt [1]. Alloy compositions were in 
the range from ~ 2 0  to more than 45 at. ~ Ti. 
Metastable S-Pu (fcc) solid solutions were also 
retained to room temperature in alloys contain- 
ing lesser amounts of Ti. The X-ray diffraction 
patterns of these ~-alloys showed strong peak 
broadening that increased with increasing Ti 
content and varied considerably for different 
h k l  sets within each pattern [1 ]. The purpose of 
the present work was to characterize one such 
6-alloy on an atomic scale with regard to 
crystallite size, lattice strain, and various lattice 
stacking faults. The alloy under consideration 
contained 85 at. ~ Pu plus 15 at. ~o Ti and was 
fcc  with a0 = 4.558 A-~. The 111,200,  220, 311 
and 222 reflections were available for examina- 
tion. 

Examination of the shape of an X-ray diffrac- 
tion profile is a technique whereby information 
can be obtained concerning the condition of the 
material on an atomic scale. Crystallite size, 
lattice strain, and lattice stacking faults are items 
that can be obtained. Since description of the 
general procedures usually employed are avail- 
able in standard literature references [2-5] the 
detailed procedures will not be described further 
in this paper. A computer program, UNFOLD,  
was written to aid in the Fourier analysis of the 

peak shape. A unique feature of this program is 
the inclusion of equations due to Wilson [6, 7] 
to calculate standard deviations of the Fourier 
coefficients directly in terms of the experimental 
intensity expressed as counts per second. The 
standard deviations were further propagated 
(with co-variance included) through the complex 
division necessary to arrive at Fourier coefficients 
free from instrumental abberations. 

For  the alloy under examination, the reflec- 
tions 111 and 222 are quite sharp and 200, 220, 
311 are relative broad. Typical experimental 
patterns taken with CuKc~ radiation are shown 
in Figs. 1 and 2. A fine-grained well-annealed 
aluminium specimen was used as the reference 
material to measure instrumental abberations. 
The A1 111 line was used as the reference line 
for the alloy 111 and 200 lines with the A1 220 
line being the reference for the alloy 220, 311, 
and 222 lines. Complex division of the alloy 
line profiles by the reference line profiles is 
termed unfolding and results in Fourier coeffici- 
ents free from instrumental effects.Theseunfolded 
coefficients may be used to resynthesize line 
profiles from which crystallite size, strain, and 
stacking faults can be obtained. Two re- 
synthesized profiles are shown in Figs. 3 and 4. 

There are generally three methods used for the 
analysis of line profiles; the obtaining of the 
integral breadth of the line profile, the examina- 
tion of the Fourier coefficients describing the 
shape of the line, and the evaluation of the 

*The term "splat-cooling" refers to one of a variety of different techniques for rapid quenching of alloy melts. A 
necessary requirement in all splat-cooling techniques is to generate thin liquid films in perfect contact with a good 
thermal conductor, such as copper or silver. 
tThere is a misprint in [1] where the lattice parameter is given as 4.588 A. 
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Figure 1 Experimental X-ray diffraction profile of the 111 
reflection of a 15Ti-85Pu splat-cooled alloy. 

second moment of the line profile about its 
centroid. Each of these methods will be discussed 
in turn below. 

2. Data analysis 
2.1. Integral breadth 
The integral breadth of a line profile may be 
found in two ways. It is convenient to least- 
squares fit a Gaussian curve with a polynomial 
background to the data [8]. From this fit the 
integral breadth is found as ~/(27r) times the 
Gaussian width parameter. The second way is to 
divide the difference in 20 across the line profile 
by the sum of the unfolded Fourier coefficients. 
Unless the profile is quite asymmetrical the two 
methods should yield comparable results. The 
integral breadths obtained by these methods are 
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Figure 2 Experimental X-ray diffraction profile of the 200 
reflection of a 15Ti-85Pu splat-cooled alloy. 
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Figure 3 The 1 1 1 diffraction profile resynthesized from 
unfolded Fourier coefficients. Compare with Fig. 1 for 
the effects of instrumental abberations. 

15.0 

?a 
~ zc ..o 

e~  I " �9 "~ *..�9176176149 
�9 o~'e~149 ,I " "  " "* %�9176176176 

- 1 . 0  '~1 
41,20 39,35 37. 50 

2 8  (deg) 

t?igure 4 The 200 diffraction profile resynthesized from 
u n f o l d e d  Fourier coefficients. Compare with Fig. 2 for 
t h e  e f f e c t s  o f  i n s t r u m e n t a l  a b b e r a t i o n s .  
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in units of degrees 20 and are converted to units 
of  s, A -~, (s = 2 sin0/A) by the multiplication of 
the factor (2~r/360)x (cos0/A). The integral 
breadths, /3(s), calculated by this procedure are 
listed in Table I. The subscript G refers to a 
Gaussian fit of the data while the subscript Z" 
refers to the summation of Fourier coefficients. 

TABLE I Experimental integral breadths, /3(s), for a 
splat-cooled 15Ti-85 Pu Alloy 

hk! #(s)G(i -~) #(s)s( i  ~) 

111 4.71 4-3X10 -3 4.72 4-2•  -a 
200 17.00 • 10 16.35 • 12 
220 13.12 • 15 12.88 • 13 
311 15.50 • 11 14.85 • 19 
222 6.57 • 9 6.65 • 11 

The data of  Table I are plotted in Fig. 5 as 
(/3~) 2 versus sin20/A 2. The straight line was fitted 
by least-squares techniques. The crystallite size, 
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Figure 5 Experimental integral breadth for a 15Ti-85Pu 
splat-cooled alloy as a function of sin20/A ~. 

D, and average strain, ez, perpendicular to the 
1 1 1 planes, determined from the intercept and 
slope, respectively, of  the straight line, are 
D = 258 • 4 A, ez = 0.0035 4- 1. Second order 
reflections of  200, 220, and 3 11 are not avail- 
able for examination and strain and crystallite 
size for these directions cannot be reliably 
determined. The very great departure of the 
integral breadth of the lines from the values for 
1 1 1-222 are indications that considerable 
stacking faulting exists. I f  the assumption is 
made that the strain determined from the 1 1 1- 

222 lines is isotropic then the crystallite size 
perpendicularto200, 220, and 311 is respectively 
61 • 1, 84 4- 3, and 70 =k 2 • as determined 
from the intercepts of the dashed lines of Fig. 5. 

2.2. Fourier coemcients 
The normalized unfolded Fourier coefficients 
(C = (A2+  Bz) 1/~) for the five reflections ex- 
amined are plotted in Fig. 6.There are two general 
sets observed; those coefficients belonging to the 
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Figure 6 Normalized unfolded Fourier coefficients for five 
reflections from splat-cooled 15Ti-85Pu alloy. 

relatively sharp lines 111, 222 and the second 
set belonging to the broad lines 200, 220, and 
311. In Fig. 7 the Fourier coefficients are plotted 
as a function of h 2 + k 2 + 12 for constant L, 
with L = 60 A as a typical example. Table I I  
lists the intercepts and slopes obtained by fitting 
the data to the general exponential equation 
y = a exp bx for selected values of L. Again, it 
is assumed that strain determined f rom 111-222 
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Figure 7 Logarithmic plot of normalized unfolded 
Fourier coefficients from splat-cooled 15Ti-85Pu for 
L = 60A. 
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TABLE II  Intercepts and slopes as a function of L. 
Obtained by fitting data of Fig. 6 to the 
equation y = a exp bx 

L ( A )  Intercept Slope 

111-222 200 220 311 

10 0.987 0.898 0.927 0.912 -0.002 24 
20 0.962 0.753 0.827 0.775 -0.004 17 
30 0.941 0.535 0.690 0.597 -0.007 49 
40 0.895 0.208 0 .453 0.332 -0.009 31 
50 0.870 0.075 0.272 0 .178  -0.015 80 
60 0.821 0.033 0 .178  0 .108  -0.021 42 
70 0.768 0.01 0.128 0.07 - 0.030 90 
80 0.698 0.01 0.103 0.05 -0.039 40 
90 0.619 0.01 0.088 0.03 -0.048 70 

100 0.549 0.01 0.064 0.03 - 0.059 20 
110 0.504 0.056 0.02 -0.077 00 
120 0.460 0.043 0.03 -0.096 30 
130 0.448 -0.133 80 
140 0.450 -0.183 20 

is isotropic and this fixes the constant  b for the 
reflections 200, 220,  and 311 in the exponential 
equation. 

The root  mean squared strain, EF ~, can be 
calculated f rom the slope of  the Fourier  coeffici- 
ents curve plotted as a function o f  h ~ + k s + l ~ 
utilizing the following equation. 

= a~ ( - s l o p e )  (1) 
eF 2 2~r2 L ~ 

where a0 = 4.558 A for  15Ti-85Pu. The strains 
determined in this manner  are plotted in Fig. 8 
as a function of  L. While the strains are in 
general agreement with the value determined by 
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Figure 8 Variation of strain, eF, as a function of L. 
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the integral breadth method (~0.0035),  Fig. 8 
indicates that  as L ~ 0 the local strain becomes 
very high indeed. This might  be expected due to 
the cooling rates of  millions o f  degrees per 
second obtainable by the splat-cooling technique. 
At  L = 0 the local strain is estimated to be 
0.0058 4- 3. 

The Fourier  crystallite size coefficients, the 
intercepts of  Table II,  are plotted as a function 
o f  L in Fig. 9. The intersection on the L-axis of  a 

1.0 o / I I ~ [ I 

~x 

u,_ 

b3 200  

0.4 

0.2 
o 

: ~  
zx A ~ o r \ \ % x  ~ , ~, , 

O( 20  4 0  6 0  80  I00 120 

Figure 9 Crystallite size via the Fourier coefficient 
technique. 

line drawn through the linear por t ion o f  the 
curve yields an effective crystallite size, De. 
For  the four  reflections in Fig. 9, De is 173 ztz 3 A 
for  1 1 1-222, 48 4- 7 for  200, 63 -4- 6 for 220,  
and 58 :k 5 for 31 1. 

The separation of  the true crystallite size and 
the compound  stacking faults f rom the effective 
crystallite size is accomplished by plotting 1/De 
as a function of  V1, k ~. V~, k~ is a constant  for  a 
given value of  h k l  and reflects the contr ibut ion 
to the total line profile observed of  the various 
signed permutat ions o f  h k l  that  are affected by 
stacking faults. Tables of  Vh k ~ are available [3, 4]. 
The intercept in Fig. 10 is the reciprocal of  the 
true crystallite size D and the slope is equal to 
(1.5 ~' + 1.5 ~" + fl)/ao where a '  = the proba-  
bility of  finding a single stacking fault between 
neighbouring 111 planes, ~ " =  the double 
stacking fault probabil i ty;  and /3 = the twin 
fault probability. F r o m  the intercept and slope 
of  Fig. 10; D = 263 4- 570 A and (1.5 a '  + 
1.5 a "  + fi) = 0.078 4- 0.055. 

The sine terms, B, o f  the normalized unfolded. 
Fourier  coefficients may be used to obtain 
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information about o~" and /3 according to the 
following formula [3, 4]; 

(4.5 ~ " +  t3) 
(B.)~-~0 - ,/3 . x ~  (2) 

where n = harmonic number and X~k~ is a 
constant for a given hkl  and is similar in nature 
to V~ k z- Tables of X~ k z are available [3, 4]. 

A problem exists concerning the functional 
form of the extrapolation of the sine terms, B. 
As shown in Fig. 11, for example, a simple poly- 
nominal is suggested. Warren [9] has derived 
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Figure 10 Separation of true crystallite size and com- 
pound stacking fault parameter from effective crystallite 
size. 
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Figure 11 Variation of Fourier sine coefficients, Bn, as a 
function of harmonic number, n. The 1 1 1 reflection of a 
15Ti-85Pu splat-cooled alloy. 

the form of the following equation which is hkl  
dependent and predicts algebraic signs for the 
coefficients of the quadratic representation in L 
that are in general agreement with the observed 
data: 

BL,~kZ_ (4.5 ~" _+__fi) i X  (4-)Lo 
,/3(~ + b) L ~  ILol 

- aoho ( ~ )  Lo L 

- ~ ( 1 " 5 ~ ' +  l ' 5 a " + / 3 ) [ b ~  ] } 
N~.0g/lo~ (• L~ �9 

(3) 

Collection of terms and introduction of abbrevi- 
ations yields 

BLhkz _ (a'5~ + fi) f ~  (• 
43(u + b) lLo1 

- Cl~ ~ [~ (• L 
h le~ 1 

+C2"-~o~[~(•  } (4) 

This may be reduced to 

Y = Plxl + P2x2 + Pax3 �9 (5) 
P1 is found by setting xl = 1.0 and least squares 
fitting data for each hkl  to the variables x 2 and 
x8 including the constraint of the correct algebraic 
sign for Pz and P3. P~ is plotted as a function of 
Xh k z in Fig. 12. The slope is determined to be 
0.058 ! 0.029 from which is calculated (4.5 a"  + 
/3) = O.lOO :5 0.050. 
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Figure 12 Variation of extrapolated Fourier coefficient 
sine terms as a function of X~t. 
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Values for two equations involving the three 
types of  stacking faults have been obtained and a 
third value from a different equation is needed 
to separate the stacking faults. The lattice 
parameter, ah k ~, calculated from a peak position 
of the individual h k l  reflections of  fc c materials 
depends on the true lattice parameter  ao, the 
difference (~' - ~"), the residual stress e, and 
the geometrical abberations of  the diffracto- 
meter. It has been shown [3 ] that these quantities 
are related according to 

ahk~=  a o +  ( S 0 h k A ' c r ' a 0  
+ Ghk~" ao" (og -- od') + rn ' f (O)  (6) 

where (S~)hk~ A and Ghkz are constants which 
depend on the planes hkl .  Tables of Ghkz are 
available [3, 4]. The second term of the equation 
is dependent on a combination of elastic con- 
stants and reflecting planes hk l ,  the residual 
stress and the lattice constant. After some 
reduction it can be expressed as 

( S O b s ? "  ~" ao 
~h2k 2 + k212 + h21~ 

= + Ps L + -t5 / 
The third term may be written as 

G h k ~ ' a o ' ( ~ ' - -  ~") = P ~ ' G h k z  �9 
The fourth term is 

m ' f ( O )  = Ps" cos0cot0 

for diffractometer focusing geometry. Equation 6 
may now be represented as 

y = P~x~ + P~x~ + P~x~ + P , x ,  + P~x~ . (7) 

Values for a~ ~ (ie. y) were calculated from 20 
values representing the centroids of the observed 
experimental intensity data. Corrections to 20 
for deviations from the focusing circle of  the 
diffractometer were applied. Values for the 
remaining terms (ie. x~-, j = 1, 5) were calculated 
or taken from published tables [3, 4]. The x, y 
values are elements of a matrix and these are 
arranged in an array in Table III.  

The data represented in Table I I I  are usually 
plotted as y versus xs with deviations from a 

TABLE I I I  Matrix elements for the solution of 
equation (7) for experimental values 
obtained for splat-cooled 15Ti-85 Pu 

hkl  y (~) xl x2 xa x4 x~ 

111 4.5695 1.0 1.0 0.333 -0.035 3.114 
200 4.5650 1.0 1.0 0.000 0.069 2.610 
220 4.5644 1.0 1.0 0.250 -0.035 1.611 
311 4.5651 1.0 1.0 0.157 0.013 1.223 
222 4.5639 1.0 1.0 0.333 0.017 1.119 
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Figure 13 Calculated lattice constant, abet, versus 
cos 0cot0 for a sample of splat-cooled 15Ti-85Pu. 

straight line representing the contributions of  
stacking faults and stress to the lattice parameter  
(see Fig. 13). As two columns of matrix elements 
are equal, xl and x2, the matrix is singular and 
cannot be solved in this form. Since the lattice 
constant for this material is known (a0 = 4.558) 
the parameter  P1 is set equal to this value and the 
remaining parameters were computed by least 
squares techniques. Their values areP= -- 0.0027, 
P8 = 0.0042, P4 = -0.0103,  P5 = 0.0021. The 
positive signs for P2 and P3 are interpreted to 
mean that the material is under tensile stress. 
The stacking fault parameter of  interest, 
(~' - ~"), is obtained from the ratio P~/P~ and 
equals -0 .002  -4- 0.008. 

Separation of stacking fault probabilities is 
accomplished by solving the following equations: 

1.5~' + 1.5~" + ]3 = 0.078 4-0.055 
4.5a" + /3 = 0.100 4- 0.050 

o~' - c~" = -0 .002  • 0.008 

to obtain 
~' = 0.011 4- 0.052 

a"  = 0.013 • 0.050 
/3 = 0.043 4-0.196 . 

The magnitude of the probabilities indicates 
that twinning is four times more common than 
either of  the individual stacking faults. Thus, 
most of the observed line broadening in excess of  
crystallite size is due to twinning. 

2.3. Second  momen t  
The variance, W, of the unfolded diffraction 
profile is obtained by subtracting the second 
moment  of  the reference line from the second 
moment  of the broadened line. That  is, 

W = 2nd M e  B - -  2nd Me s (8) 

W is dependent on the range of A S  over which 
the line profiles are examined. A S  = $ 2 -  $1 
where S = 2sin0/A. An example of the variance 
obtained as a function of A S  is given in Fig. 14 
for the 111 reflection. For  values of A S  far 
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Figure 14 The variance as a function of AS for the 1 1 1 
reflection of a sample of splat-cooled 15Ti-85Pu. 

beyond the effects of the long tails of  the broad- 
ened peak W is essentially a constant. As AS is 
decreased and the experimental region of 
broadening is entered the value of W decreases 
the decrease being linear in AS. For  small values 
of  A S  there is usually a sharp drop in W when 
the effects of  the tails are no longer felt and the 
value of W approaches zero as AS approaches 
zero. I f  the intersection of the linear portion and 
the constant portion of the plot is taken as a 
measure of  the true values of  Wand  AS, and this 
is done for several reflections, then a plot of 
W/AS  versus S2/AS yields a straight line the 
intercept of  which is equal to 1/27r2D and the 
slope is equal to (average strain) 2. Values of W 
and AS are given in Table IV. The appropriate 

TABLE IV Values of W and AS for hkl reflections of 
splat-cooled 15 Ti-85 Pu 

hkl S S 2 AS(A -1) W(h-2) 

111 0 . 3 7 6  0 . 1 4 2  0.0165 4.149 x 10 -~ 
200 0 . 4 3 6  0 . 1 9 0  0 .0315  38.779 
220 0.583 0.336 0 .0302  27.454 
311 0 . 7 2 4  0 . 5 2 5  0 .0338  38.233 
222 0.756 0.573 0.0198 7.380 

ratios are plotted in Fig. 15. The distribution of 
points is similar to the plots of  integral breadths 
as a function 0, (see Fig. 5), with the points 
representing 200, 220 and 311 indicating 
considerable faulting. The strain determined 
from the slope of the line through the 1 1 1-222 
points is 0.0024 and the intercept yields D = 250 

1 6  x l 0  - 3  

~1,~ o 8,,o--" 

I 
L5.0 ~-0.0 
s_2 ~ 
Z~S 

Figure 15 W/A S versus S2/AS for a sample of splat-cooled 
15Ti-85Pu. 

A. Applying this strain to the remaining points 
yields D = 42 A for 200, 59 for 220 and 48 for 
311. 

3. Conclusions 
Three different methods of examining X-ray 
line broadening have been applied to data 
obtained for a sample of  splat-cooled 15Ti-85Pu 
alloy. The techniques are complementary and 
all yield essentially identical information. 

The integral breadth and variance methods 
indicate a crystallite size of  _~255 A and an 
average strain of ~0.0030 with considerable 
stacking faulting evident. The Fourier coefficient 
method offers the most  extensive analysis and 
the results may be summarized as follows. From 
an examination of the unfolded Fourier coeffici- 
ents describing the shape of the diffraction line 
profile it has been determined that the crystallite 
size, D ~_ 260 A, the localized strain ~-0.6~,  
and the combined stacking fault probability 
(1.5cd + 1.5~" + fi) = 0.078 while (4.5~" + /3) 
--- 0.100. From lattice constant variations the 
combined stacking fault probability (~' - og') 
has been determined to be -0 .002  as well as the 
information that the material is under tension. 
Individual stacking fault probabilities are ~' = 
0.011, ~" = 0.013 and/3 = 0.043. The reciprocal 
of  the probability is the number of planes of 
atoms between the indicated stacking fault. The 
magnitude of the numbers indicates that twinning 
is four times more common than any other kind 
of fault. 
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